Content area

Abstract

The application of unmanned vehicles in civilian and military fields is increasingly widespread. Traditionally, unmanned vehicles primarily rely on Global Positioning Systems (GPSs) for positioning; however, GPS signals can be limited or completely lost in conditions such as building obstructions, indoor environments, or electronic interference. In addition, countries are actively developing GPS jamming and deception technologies for military applications, making precise positioning and navigation of unmanned vehicles in GPS-denied or constrained environments a critical issue that needs to be addressed. In this work, authors propose a method based on Visual–Inertial Odometry (VIO), integrating the extended Kalman filter (EKF), an Inertial Measurement Unit (IMU), optical flow, and feature matching to achieve drone localization in GPS-denied environments. The proposed method uses the heading angle and acceleration data obtained from the IMU as the state prediction for the EKF, and estimates relative displacement using optical flow. It further corrects the optical flow calculation errors through IMU rotation compensation, enhancing the robustness of visual odometry. Additionally, when re-selecting feature points for optical flow, it combines a KAZE feature matching technique for global position correction, reducing drift errors caused by long-duration flight. The authors also employ an adaptive noise adjustment strategy that dynamically adjusts the internal state and measurement noise matrices of the EKF based on the rate of change in heading angle and feature matching reliability, allowing the drone to maintain stable positioning in various flight conditions. According to the simulation results, the proposed method is able to effectively estimate the flight trajectory of drones without GPS. Compared to results that rely solely on optical flow or feature matching, it significantly reduces cumulative errors. This makes it suitable for urban environments, forest areas, and military applications where GPS signals are limited, providing a reliable solution for autonomous navigation and positioning of drones.

Details

1009240
Title
UAV Sensor Data Fusion for Localization Using Adaptive Multiscale Feature Matching Mechanisms Under GPS-Deprived Environment
Publication title
Aerospace; Basel
Volume
12
Issue
12
First page
1048
Number of pages
25
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-25
Milestone dates
2025-09-13 (Received); 2025-11-23 (Accepted)
Publication history
 
 
   First posting date
25 Nov 2025
ProQuest document ID
3286238113
Document URL
https://www.proquest.com/scholarly-journals/uav-sensor-data-fusion-localization-using/docview/3286238113/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-24
Database
ProQuest One Academic