Content area
ABSTRACT
This study introduces an innovative composite cathode catalyst layer (CCL) design for proton exchange membrane fuel cells (PEMFCs), combining Pt‐supported by Vulcan carbon (Pt/V) and Ketjenblack carbon (Pt/KB) to overcome mass transport limitations and ionomer‐induced catalyst poisoning. The composite architecture strategically positions Pt/V layer with lower ionomer‐to‐carbon ratio (I/C = 0.6) near the proton exchange membrane to maximize surface Pt accessibility and oxygen transport efficiency, whereas Pt/KB layer (I/C = 0.9) adjacent to the gas diffusion layer leverages its porous structure to shield Pt from sulfonate group poisoning and enhance proton conduction under low‐humidity conditions. This synergistic carbon support engineering achieves a balance between reactant accessibility and catalyst utilization, as demonstrated by improved power density, reduced transport resistance, and higher Pt utilization under dry conditions. These findings establish a new paradigm for low‐Pt CCL design through rational carbon support hybridization and ionomer gradient engineering, offering a scalable solution for high‐performance PEMFCs in energy‐critical applications.
Details
1 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
2 College of New Energy, China University of Petroleum (East China), Qingdao, China
3 State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
4 Department of Chemistry, University of Science and Technology of China, Hefei, China