Content area

Abstract

With rapid developments of wireless communication and Internet of Things (IoT) technologies, an increasing number of devices and sensors are interconnected, generating massive amounts of data in real time. Among the underlying protocols, Message Queuing Telemetry Transport (MQTT) has become a widely adopted lightweight publish–subscribe standard due to its simplicity, minimal overhead, and scalability. Then, understanding such protocols is essential for students and engineers engaging in IoT application system designs. However, teaching and learning MQTT remains challenging for them. Its asynchronous architecture, hierarchical topic structure, and constituting concepts such as retained messages, Quality of Service (QoS) levels, and wildcard subscriptions are often difficult for beginners. Moreover, traditional learning resources emphasize theory and provide limited hands-on guidance, leading to a steep learning curve. To address these challenges, we propose an AI-assisted, exercise-based learning platform for MQTT. This platform provides interactive exercises with intelligent feedback to bridge the gap between theory and practice. To lower the barrier for learners, all code examples for executing MQTT communication are implemented in Python for readability, and Docker is used to ensure portable deployments of the MQTT broker and AI assistant. For evaluations, we conducted a usability study using two groups. The first group, who has no prior experience, focused on fundamental concepts with AI-guided exercises. The second group, who has relevant background, engaged in advanced projects to apply and reinforce their knowledge. The results show that the proposed platform supports learners at different levels, reduces frustrations, and improves both engagement and efficiency.

Details

1009240
Business indexing term
Company / organization
Title
An AI-Driven System for Learning MQTT Communication Protocols with Python Programming
Publication title
Volume
14
Issue
24
First page
4967
Number of pages
23
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-12-18
Milestone dates
2025-11-17 (Received); 2025-12-15 (Accepted)
Publication history
 
 
   First posting date
18 Dec 2025
ProQuest document ID
3286276046
Document URL
https://www.proquest.com/scholarly-journals/ai-driven-system-learning-mqtt-communication/docview/3286276046/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-24
Database
ProQuest One Academic