Content area

Abstract

Lung and colon cancers remain among the leading causes of cancer-related mortality worldwide, underscoring the need for rapid and accurate histopathological diagnosis. Manual examination of biopsy slides is often time-consuming and prone to inter-observer variability, which highlights the importance of developing reliable and explainable automated diagnostic systems. This study presents DPCSE-Net, a lightweight dual-path convolutional neural network enhanced with a squeeze-and-excitation (SE) attention mechanism for lung and colon cancer classification. The dual-path structure captures both fine-grained cellular textures and global contextual information through multiscale feature extraction, while the SE attention module adaptively recalibrates channel responses to emphasize discriminative features. To enhance transparency and interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM), attention heatmaps, and Integrated Gradients are employed to visualize class-specific activation patterns and verify that the model’s focus aligns with diagnostically relevant tissue regions. Evaluated on the publicly available LC25000 dataset, DPCSE-Net achieved state-of-the-art performance with 99.88% accuracy and F1-score, while maintaining low computational complexity. Ablation experiments confirmed the contribution of the dual-path design and SE module, and qualitative analyses demonstrated the model’s strong interpretability. These results establish DPCSE-Net as an accurate, efficient, and explainable framework for computer-aided histopathological diagnosis, supporting the broader goals of explainable AI in computer vision.

Details

1009240
Business indexing term
Title
Dual-Path Convolutional Neural Network with Squeeze-and-Excitation Attention for Lung and Colon Histopathology Classification
Publication title
Volume
11
Issue
12
First page
448
Number of pages
18
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-12-14
Milestone dates
2025-11-08 (Received); 2025-12-11 (Accepted)
Publication history
 
 
   First posting date
14 Dec 2025
ProQuest document ID
3286310264
Document URL
https://www.proquest.com/scholarly-journals/dual-path-convolutional-neural-network-with/docview/3286310264/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-26
Database
ProQuest One Academic