Content area
PostCOVID-19 is a condition affecting approximately 10% of individuals infected with SARS-CoV-2, presenting significant challenges in diagnosis and clinical management. Portable neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), offer real-time insights into cerebral hemodynamics and represent a promising tool for studying postCOVID-19 in naturalistic settings. This study investigates the integration of fNIRS with machine learning to identify neural correlates of postCOVID-19. A total of six machine learning classifiers—Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), XGBoost, Logistic Regression, and Multi-Layer Perceptron (MLP)—were evaluated using a stratified subject-aware cross-validation scheme on a dataset comprising 29,737 time-series samples from 37 participants (9 postCOVID-19, 28 controls). Four different feature representation strategies were compared: raw time-series, PCA-based dimensionality reduction, statistical feature extraction, and a hybrid approach that combines time-series and statistical descriptors. Among these, the hybrid representation demonstrated the highest discriminative performance. The SVM classifier trained on hybrid features achieved strong discrimination (
Details
Feature extraction;
Neuroimaging;
Alzheimer's disease;
Long COVID;
Datasets;
Hemodynamics;
Multilayers;
Severe acute respiratory syndrome coronavirus 2;
Asymptomatic;
Brain research;
Multilayer perceptrons;
Medical imaging;
Cognitive ability;
Machine learning;
Statistical analysis;
Blood;
Infrared spectra;
Representations;
Hemoglobin;
Spectrum analysis;
Sensitivity;
Support vector machines;
Near infrared radiation;
Spectroscopy;
Biomarkers;
Portability;
Real time;
Executive function;
Time series
; Herrera, Victor 2
; Zamora-Mendoza, Blanca Nohemí 3
; Flores-Ramírez, Rogelio 4
; López-Cano, Aaron A 5
; Guevara, Edgar 5
1 Department of Postgraduate Studies and Research, TecNM—Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Morelia 58120, Michoacán, Mexico; [email protected]
2 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (V.H.); [email protected] (A.A.L.-C.)
3 Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (B.N.Z.-M.); [email protected] (R.F.-R.)
4 Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (B.N.Z.-M.); [email protected] (R.F.-R.), SECIHTI—Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico
5 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (V.H.); [email protected] (A.A.L.-C.), Faculty of Science, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, San Luis Potosí 78295, San Luis Potosí, Mexico