Content area

Abstract

PostCOVID-19 is a condition affecting approximately 10% of individuals infected with SARS-CoV-2, presenting significant challenges in diagnosis and clinical management. Portable neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), offer real-time insights into cerebral hemodynamics and represent a promising tool for studying postCOVID-19 in naturalistic settings. This study investigates the integration of fNIRS with machine learning to identify neural correlates of postCOVID-19. A total of six machine learning classifiers—Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), XGBoost, Logistic Regression, and Multi-Layer Perceptron (MLP)—were evaluated using a stratified subject-aware cross-validation scheme on a dataset comprising 29,737 time-series samples from 37 participants (9 postCOVID-19, 28 controls). Four different feature representation strategies were compared: raw time-series, PCA-based dimensionality reduction, statistical feature extraction, and a hybrid approach that combines time-series and statistical descriptors. Among these, the hybrid representation demonstrated the highest discriminative performance. The SVM classifier trained on hybrid features achieved strong discrimination (ROC-AUC = 0.909) under subject-aware CV5; at the default threshold, Sensitivity was moderate and Specificity was high, outperforming all other methods. In contrast, models trained on statistical features alone exhibited limited Sensitivity despite high Specificity. These findings highlight the importance of temporal information in the fNIRS signal and support the potential of machine learning combined with portable neuroimaging for postCOVID-19 identification. This approach may contribute to the development of non-invasive diagnostic tools to support individualized treatment and longitudinal monitoring of patients with persistent neurological symptoms.

Details

1009240
Business indexing term
Title
Exploring New Horizons: fNIRS and Machine Learning in Understanding PostCOVID-19
Author
Morales-Cervantes, Antony 1   VIAFID ORCID Logo  ; Herrera, Victor 2   VIAFID ORCID Logo  ; Zamora-Mendoza, Blanca Nohemí 3   VIAFID ORCID Logo  ; Flores-Ramírez, Rogelio 4   VIAFID ORCID Logo  ; López-Cano, Aaron A 5   VIAFID ORCID Logo  ; Guevara, Edgar 5   VIAFID ORCID Logo 

 Department of Postgraduate Studies and Research, TecNM—Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Morelia 58120, Michoacán, Mexico; [email protected] 
 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (V.H.); [email protected] (A.A.L.-C.) 
 Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (B.N.Z.-M.); [email protected] (R.F.-R.) 
 Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (B.N.Z.-M.); [email protected] (R.F.-R.), SECIHTI—Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico 
 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; [email protected] (V.H.); [email protected] (A.A.L.-C.), Faculty of Science, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, San Luis Potosí 78295, San Luis Potosí, Mexico 
Volume
7
Issue
4
First page
129
Number of pages
22
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25044990
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-24
Milestone dates
2025-09-02 (Received); 2025-10-18 (Accepted)
Publication history
 
 
   First posting date
24 Oct 2025
ProQuest document ID
3286316347
Document URL
https://www.proquest.com/scholarly-journals/exploring-new-horizons-fnirs-machine-learning/docview/3286316347/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-24
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic