Content area
Classifying brain tumour transcriptomic data is crucial for precision medicine but remains challenging due to high dimensionality and limited interpretability of conventional models. This study benchmarks three image-based deep learning approaches, DeepInsight, Fotomics, and a novel saliency-guided convolutional neural network (CNN), for transcriptomic classification. DeepInsight utilises dimensionality reduction to spatially arrange gene features, while Fotomics applies Fourier transforms to encode expression patterns into structured images. The proposed method transforms each single-cell gene expression profile into an RGB image using PCA, UMAP, or t-SNE, enabling CNNs such as ResNet to learn spatially organised molecular features. Gradient-based saliency maps are employed to highlight gene regions most influential in model predictions. Evaluation is conducted on two biologically and technologically different datasets: single-cell RNA-seq from glioblastoma GSM3828672 and bulk microarray data from medulloblastoma GSE85217. Outcomes demonstrate that image-based deep learning methods, particularly those incorporating saliency guidance, provide a robust and interpretable framework for uncovering biologically meaningful patterns in complex high-dimensional omics data. For instance, ResNet-18 achieved the highest accuracy of 97.25% on the GSE85217 dataset and 91.02% on GSM3828672, respectively, outperforming other baseline models across multiple metrics.
Details
1 Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2008, Australia, Department of Computer and Information Technology, Jazan College of Technology, Technical and Vocational Training Corporation (TVTC), Riyadh 12613, Saudi Arabia
2 Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2008, Australia