Content area

Abstract

We provide new examples of sub‐Riemannian manifolds with boundary equipped with a smooth measure that satisfy the RCD(K,N)$\mathsf {RCD}(K, N)$ condition. They are constructed by equipping the half‐plane, the hemisphere and the hyperbolic half‐plane with a two‐dimensional almost‐Riemannian structure and a measure that vanishes on their boundary. The construction of these spaces is inspired from the geometry of the α$\alpha$‐Grushin plane.

Full text

Turn on search term navigation

© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.