It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The emergence and spread of anthelmintic resistance represent a major challenge for treating parasitic nematodes, threatening mass-drug control programs in humans and zoonotic species. Currently, experimental evidence to understand the influence of management (e.g., treatment intensity and frequency) and parasite-associated factors (e.g., genetic variation, population size and mutation rates) is lacking. To rectify this knowledge gap, we performed controlled evolution experiments with the model nematode Caenorhabditis elegans and further evaluated the evolution dynamics with a computational model. Large population size was critical for rapid ivermectin resistance evolution in vitro and in silico. Male nematodes were favored during resistance evolution, indicating a selective advantage of sexual recombination under drug pressure in vitro. Ivermectin resistance evolution led to the expected emergence of cross-resistance to the structurally related anthelmintic moxidectin but unexpectedly also to the structurally unrelated anthelmintic emodepside that has an entirely different mode of action. In contrast, albendazole, levamisole, and monepantel efficacy were not influenced by the evolution of Ivermectin resistance. We conclude that combining computational modeling with in vitro evolution experiments to test specific aspects of evolution directly represents a promising approach to guide the development of novel treatment strategies to anticipate and mitigate resistance evolution in parasitic nematodes.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





