Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The designing of multifunctional materials in system-level efficiency is one of the main targets and a hot topic for the application of novel green or bio-based materials and structures. In this work, the chemical structure of bio-based cardanol that was derived from cashew oil was modified through a reaction with a bishydrazino-s-triazine derivative followed by condensation polymerization or reaction with terephthaldehyde to obtain a Schiff base polymer. The chemical structures of the modified cardanol-bishydrazino-s-triazine-based monomer and the Schiff base polymer were confirmed from FTIR and NMR spectroscopy analyses. The modified cardanol bishydrazino-s-triazine monomer and polymer were added with different weight ratios during the curing of the epoxy/polyamine hardener to improve the thermal, mechanical, and anti-corrosion characteristics of the epoxy coating of a steel substrate. The data elucidated that the presence of a cardanol bishydrazino-s-triazine monomer and polymer improves the thermal, mechanical, adhesion, and anti-corrosion characteristics of epoxy coatings after exposure for more than 1500 h. The presence of a cardanol- bishydrazino-s-triazine polymer more than 3 wt.% during the curing of epoxy networks produces superhydrophobic and self-healing epoxy coatings. The modification of the epoxy coating with the cardanol bishydrazino-s-triazine polymer improves the seawater contact angle by more than 150° and the adhesion strength of the epoxy coating with the steel surface.

Details

Title
Multi-Functional Cardanol Triazine Schiff Base Polyimine Additives for Self-Healing and Super-Hydrophobic Epoxy of Steel Coating
Author
Atta, Ayman M; Ahmed, Mona A; Al-Lohedan, Hamad A; El-Faham, Ayman  VIAFID ORCID Logo 
First page
327
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2385828006
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.