[A & I plus PDF only]
COPYRIGHT: © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2008
Abstract
A Landsat Thematic Mapper (TM) scene from 2003 covering the Jotunheimen and Breheimen region has been used to map the recent glacier extents using thresholded ratio images (TM3/TM5). Orthoprojected aerial photographs and glacier outlines from digital maps have been used to validate the method and control the results. We further calculated glacier changes by comparing the Landsat-derived 2003 glacier outlines with previous maps and inventories from the 1930s, 1960s and 1980s. Our results confirm that the applied automatic mapping method is robust and agrees with the reference data used. Some manual editing was necessary to correct the outline at ice-lake contacts and at debris covered glaciers. However, for most of the glaciers no corrections were required. The most laborious task has been to assign ID numbers and couple the new Landsat inventory to previous inventories to assess area changes. The glaciers investigated shrank since the 1930s with an overall area reduction of about 23% for 38 glaciers. Since the 1960s the area reduction was 12% for 164 glaciers. Although the general trend is glacier recession, some glaciers have increased their size or remained nearly unchanged over these decades.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer