Content area

Abstract

The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using several variations of DupER Augmentation (based on different imputation methodologies, deletion rates, and duplication rates), analyzed in BILOG-MG 3, and results are compared to those obtained from analyzing the raw data. Additional manipulated variables include test length and sample size. Estimates are compared using seven different evaluative criteria.

Results are mixed and inconclusive. DupER augmented data tend to result in larger root mean squared errors (RMSEs) and lower correlations between estimates and parameters for both item and ability parameters. However, some DupER variations produce estimates that are much less biased than those obtained from the raw data alone. For one DupER variation, it was found that DupER produced better results for low-ability simulees and worse results for those with high abilities. Findings, limitations, and recommendations for future studies are discussed. Specific recommendations for future studies include the application of Duper Augmentation (1) to empirical data, (2) with additional IRT models, and (3) the analysis of the efficacy of the procedure for different item and ability parameter distributions.

Details

Title
Improving IRT parameter estimates with small sample sizes: Evaluating the efficacy of a new data augmentation technique
Author
Foley, Brett Patrick
Year
2010
Publisher
ProQuest Dissertations Publishing
ISBN
978-1-124-12402-5
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
748169916
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.