Content area

Abstract

Soil water movement with root water uptake is a key process for plant growth and transport of water and chemicals in the soil-plant system. In this study, a root water extraction model was developed to incorporate the effect of soil water deficit and plant root distributions on plant transpiration of annual crops. For several annual crops, normalized root density distribution functions were established to characterize the relative distributions of root density at different growth stages. The ratio of actual to potential cumulative transpiration was used to determine plant leaf area index under water stress from measurements of plant leaf area index at optimal soil water condition. The root water uptake model was implemented in a numerical model. The numerical model was applied to simulate soil water movement with root water uptake and simulation results were compared with field experimental data. The simulated soil matric potential, soil water content and cumulative evapotranspiration had reasonable agreement with the measured data. Potentially the numerical model implemented with the root water extraction model is a useful tool to study various problems related to flow transport with plant water uptake in variably saturated soils.[PUBLICATION ABSTRACT]

Details

Title
Modeling soil water movement with water uptake by roots
Author
Wu, Jinquan; Zhang, Renduo; Gui, Shengxiang
Pages
7-17
Publication year
1999
Publication date
Sep 1999
Publisher
Springer Nature B.V.
ISSN
0032-079X
e-ISSN
1573-5036
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
751155173
Copyright
Kluwer Academic Publishers 1999