Content area

Abstract

We study some properties of graphs whose mean curvature (in distributional sense) is a vector Radon measure. In particular, we prove that the distributional mean curvature of the graph of a Lipschitz continuous function u is a measure if and only if the distributional divergence of T u is a measure. This equivalence fails to be true if Lipschitz continuity is relaxed, as it is shown in a couple of examples. Finally, we prove a theorem of approximation in W ^sup (1,1)^ and in the sense of mean curvature of C ^sup 2^ graphs by polyhedral graphs. A number of examples illustrating different situations which can occur complete the work.[PUBLICATION ABSTRACT]

Details

Title
On the generalized mean curvature
Volume
39
Issue
3-4
Pages
491-523
Publication year
2010
Publication date
Nov 2010
Publisher
Springer Nature B.V.
Place of publication
Heidelberg
Country of publication
Netherlands
Publication subject
ISSN
09442669
e-ISSN
14320835
Source type
Scholarly Journal
Language of publication
English
Document type
Feature
ProQuest document ID
775601147
Document URL
https://www.proquest.com/scholarly-journals/on-generalized-mean-curvature/docview/775601147/se-2?accountid=208611
Copyright
Springer-Verlag 2010
Last updated
2024-01-25
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic