Content area

Abstract

Ant colony optimization (ACO) algorithm is a recent meta-heuristic method inspired by the behavior of real ant colonies. The algorithm uses parallel computation mechanism and performs strong robustness, but it faces the limitations of stagnation and premature convergence. In this paper, a hybrid PS-ACO algorithm, ACO algorithm modified by particle swarm optimization (PSO) algorithm, is presented. The pheromone updating rules of ACO are combined with the local and global search mechanisms of PSO. On one hand, the search space is expanded by the local exploration; on the other hand, the search process is directed by the global experience. The local and global search mechanisms are combined stochastically to balance the exploration and the exploitation, so that the search efficiency can be improved. The convergence analysis and parameters selection are given through simulations on traveling salesman problems (TSP). The results show that the hybrid PS-ACO algorithm has better convergence performance than genetic algorithm (GA), ACO and MMAS under the condition of limited evolution iterations.[PUBLICATION ABSTRACT]

Details

Title
Study on hybrid PS-ACO algorithm
Author
Shuang, Bing; Chen, Jiapin; Li, Zhenbo
Pages
64-73
Publication year
2011
Publication date
Feb 2011
Publisher
Springer Nature B.V.
ISSN
0924669X
e-ISSN
1573-7497
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
847106017
Copyright
Springer Science+Business Media, LLC 2011