Abstract
A number of problems in Economics, Finance, Information Theory, Insurance, and generally in decision making under uncertainty rely on estimates of the covariance between (transformed) random variables, which can, for example, be losses, risks, incomes, financial returns, and so forth. Several avenues relying on inequalities for analyzing the covariance are available in the literature, bearing the names of Chebyshev, Grüss, Hoeffding, Kantorovich, and others. In the present paper we sharpen the upper bound of a Grüss-type covariance inequality by incorporating a notion of quadrant dependence between random variables and also utilizing the idea of constraining the means of the random variables.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





