Abstract
MIMO links can significantly improve network throughput by supporting multiple concurrent data streams between a pair of nodes and suppressing wireless interference. In this paper, we study joint rate control, routing, and scheduling in MIMO-based multihop wireless networks, which are traditionally known as transport layer, network layer, and MAC layer issues, respectively. Our aim is to find a rate allocation along with a flow allocation and a transmission schedule for a set of end-to-end communication sessions so as to maximize the network throughput and also to achieve the proportional or weighted fairness among these sessions. To this end, we develop Transmission Mode Generating Algorithms (TMGAs), and Linear Programming- (LP-) and Convex Programming- (CP-) based optimization schemes for the MIMO networks. The performances of the proposed schemes are verified by simulation experiments, and the results show that the different schemes have different performance benefits when achieving a tradeoff between throughput and fairness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





