Abstract
Energy concentration of the S-transform in the time-frequency domain has been addressed in this paper by optimizing the width of the window function used. A new scheme is developed and referred to as a window width optimized S-transform. Two optimization schemes have been proposed, one for a constant window width, the other for time-varying window width. The former is intended for signals with constant or slowly varying frequencies, while the latter can deal with signals with fast changing frequency components. The proposed scheme has been evaluated using a set of test signals. The results have indicated that the new scheme can provide much improved energy concentration in the time-frequency domain in comparison with the standard S-transform. It is also shown using the test signals that the proposed scheme can lead to higher energy concentration in comparison with other standard linear techniques, such as short-time Fourier transform and its adaptive forms. Finally, the method has been demonstrated on engine knock signal analysis to show its effectiveness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





