Abstract
Non-line-of-sight (NLOS) identification and mitigation carry significant importance in wireless localization systems. In this paper, we propose a novel NLOS identification technique based on the multipath channel statistics such as the kurtosis, the mean excess delay spread, and the root-mean-square delay spread. In particular, the IEEE 802.15.4a ultrawideband channel models are used as examples and the above statistics are found to be well modeled by log-normal random variables. Subsequently, a joint likelihood ratio test is developed for line-of-sight (LOS) or NLOS identification. Three different weighted least-squares (WLSs) localization techniques that exploit the statistics of multipath components (MPCs) are analyzed. The basic idea behind the proposed WLS approaches is that smaller weights are given to the measurements which are likely to be biased (based on the MPC information), as opposed to variance-based WLS techniques in the literature. Accuracy gains with respect to the conventional least-squares algorithm are demonstrated via Monte-Carlo simulations and verified by theoretical derivations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





