Content area
Full Text
ABSTRACT
Multiple equilibria in a coupled ocean-atmosphere-sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice-covered "snowball" state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere.
It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model.
(ProQuest: ... denotes formulae omitted.)
1. Introduction
A central question of climate research concerns the existence or otherwise of multiple equilibria. Lorenz (1968, 1970) discusses the implications for climate of whether the governing equations are "transitive," supporting only one set of long-term statistics, or "intransitive," supporting two or more sets of long-term statistics (i.e., multiple equilibria); each of which has a finite probability of resulting from random initial conditions. The proven existence ofmultiple equilibria in complex models of the climate system would have a profound...