Abstract
Digital image stabilization (DIS) is a technique to prevent images captured by a handheld camera from temporal fluctuation. This paper proposes a new DIS algorithm that reduces the computation time while preserving the accuracy of the algorithm. To reduce the computation time, an image is transformed by a Laplacian operation and then converted into two one-bit spaces, called [superscript]L+[/superscript] and [superscript]L-[/superscript] spaces. The computation time is reduced because only two-bits-per-pixel are used while the accuracy is maintained because the Laplacian operation preserves the edge information which can be efficiently used for the estimation of camera motion. Either two or four subimages in the corners of an image frame are selected according to the type of the image and five local motion vectors with their probabilities to be a global motion vector are derived for each subimage. The global motion vector is derived from these local motion vectors based on their probabilities. Experimental results show that the proposed algorithm achieves a similar or better accuracy than a conventional DIS algorithm using a local motion estimation based on a full-search scheme and MSE criterion while the complexity of the proposed algorithm is much less than the conventional algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





