[A & I plus PDF only]
COPYRIGHT: © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2011
Abstract
Warming in the Arctic during the past several decades has caused glaciers to thin and retreat, and recent mass loss from the Greenland Ice Sheet is well documented. Local glaciers peripheral to the ice sheet are also retreating, but few mass-balance observations are available to quantify that retreat and determine the extent to which these glaciers are out of equilibrium with present-day climate. Here, we document record mass loss in 2009/10 for the Mittivakkat Gletscher (henceforth MG), the only local glacier in Greenland for which there exist long-term observations of both the surface mass balance and glacier front fluctuations. We attribute this mass loss primarily to record high mean summer (June-August) temperatures in combination with lower-than-average winter precipitation. Also, we use the 15-yr mass-balance record to estimate present-day and equilibrium accumulation-area ratios for the MG. We show that the glacier is significantly out of balance and will likely lose at least 70% of its current area and 80% of its volume even in the absence of further climate changes. Temperature records from coastal stations in Southeast Greenland suggest that recent MG mass losses are not merely a local phenomenon, but are indicative of glacier changes in the broader region. Mass-balance observations for the MG therefore provide unique documentation of the general retreat of Southeast Greenland's local glaciers under ongoing climate warming.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer