It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An alternate formalism that uses vector variables to treat the two-body Lippmann-Schwinger equation for realistic nucleon-nucleon potentials in momentum space is discussed in this thesis. The formalism uses the symmetry properties of the nucleon-nucleon potential and expands the nucleon-nucleon potential in terms of six linearly independent spin operators. The alternate formalism discussed in this thesis brings to light the role of time-odd spin operators. The vector variable formalism's treatment of spin degrees of freedom heavily depends on the analytical computation of hundreds of algebraic expression. A mathematical framework and computer algorithms for an automated symbolic reduction of algebraic expressions into scalar functions of vector variables are explained in this thesis. The vector variable formalism requires nucleon-nucleon potentials that are in operator form as input. The configuration space nucleon-nucleon potential Argonne V18 is one such potential that can be used for relativistic energies if it can be computed efficiently in momentum space. This thesis develops an efficient numerical technique using Chebyshev approximation to compute the Argonne V18 potential in momentum-space. The tools discussed in this thesis, the algebraic system and the efficient computation of the Argonne V18 potential in momentum space are tested by computing the binding energy and bound state wavefunctions of the deuteron using the vector variable approach. The results were successful and the first step towards a higher goal of using vector formalism of the three-body Faddeev equations for intermediate and high energies has been made.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer