It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Background: Early maturation in the Atlantic salmon is an interesting subject for numerous research lines. Prior to sea migration, parr can reach sexual maturation and successfully fertilize adult female eggs during the reproductive season. These individuals are known as precocious parr, mature parr or "sneakers". Reasons for early maturation are unknown and this transitory stage is usually considered to be a threshold trait. Here, we compare methylation patterns between mature and immature salmon parr from two different rivers in order to infer if such methylation differences may be related to their maturation condition. First we analyzed genetic differences between rivers by means of AFLPs. Then, we compared the DNA methylation differences between mature and immature parrs, using a Methylation-Sensitive Amplified Polymorphism (MSAP), which is a modification of the AFLPs method by making use of the differential sensitivity of a pair of restriction enzymes isoschizomeres to cytosine methylation. The tissues essayed included brain, liver and gonads.
Results: AFLPs statistical analysis showed that there was no significant differentiation between rivers or a significant differentiation between maturation states in each river. MSAP statistical analysis showed that among the three tissues sampled, the gonads had the highest number of significant single-locus variation among populations with 74 loci followed by brain with 70 and finally liver with only 12. Principal components analysis (PCA) of the MSAP profiles revealed different profiles among different tissues (liver, brain and testis) clearly separating maturation states in the testis tissue when compared to the liver.
Conclusions: Our results reveal that genetically-similar mature and immature salmon parr present high levels of DNA methylation variation in two of the three analyzed tissues. We hypothesize that early maturation may be mostly mediated by epigenetic processes rather than by genetic differences between parrs. To our knowledge this is the first study that attempt to link phenotypic plasticity in salmonids and epigenetic changes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer