Abstract
Abstract
Background: Photorhabdus are Gram negative entomopathogenic bacteria that also have a mutualistic association with nematodes from the family Heterorhabditis . An essential part of this symbiosis is the ability of the bacterium to colonize the gut of the freeliving form of the nematode called the infective juvenile (IJ). Although the colonization process (also called transmission) has been described phenomonologically very little is known about the underlying molecular mechanisms. Therefore, in this study, we were interested in identifying genes in Photorhabdus that are important for IJ colonization.
Results: In this work we genetically tagged P. luminescens TT01 with gfp and constructed a library containing over 3200 mutants using the suicide vector, pUT-Km2. Using a combination of in vitro symbiosis assays and fluorescent microscopy we screened this library for mutants that were affected in their ability to colonize the IJ i.e. with decreased transmission frequencies. In total 8 mutants were identified with transmission frequencies of ≤ 30% compared to wild-type. These mutants were mapped to 6 different genetic loci; the pbgPE operon, galE , galU , proQ , asmA and hdfR . The pbgPE , galE and galU mutants were all predicted to be involved in LPS biosynthesis and, in support of this, we have shown that these mutants are avirulent and sensitive to the cationic antimicriobial peptide, polymyxin B. On the other hand the proQ , asmA and hdfR mutants were not affected in virulence and were either as resistant (proQ ) or slightly more sensitive (asmA, hdfR ) to polymyxin B than the wild-type (WT).
Conclusions: This is the first report describing the outcome of a comprehensive screen looking for transmission mutants in Photorhabdus . In total 6 genetic loci were identified and we present evidence that all of these loci are involved in the assembly and/or maintenance of LPS and other factors associated with the cell surface. Interestingly several, but not all, of the transmission mutants identified were also avirulent suggesting that there is a significant, but not complete, genetic overlap between pathogenicity and mutualism. Therefore, this study highlights the importance of the cell surface in mediating the symbiotic and pathogenic interactions of Photorhabdus .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




