It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Network-wide traffic monitoring is of interest to network operators. With constantly changing traffic characteristics and measurement objectives, existing techniques for traffic monitoring tend to be sub-optimal due to poor choice of monitor deployment locations. Routing-assisted network monitoring mechanisms have successfully catered to these needs and are able to maximize the overall traffic monitoring utility of the network by strategically re-directing selected traffic sub-populations over existing deployed monitoring devices. Both the traffic measurement gain of the network and the load-balancing of measurement workloads across distributed monitoring devices are important performance metrics in the design of efficient routing-assisted traffic monitoring mechanisms. This thesis focuses on the design of gain-driven routing-assisted monitoring mechanisms where maximizing the overall traffic measurement gain is our primary design objective. This problem is tackled using two different approaches. First, novel centralized optimal and heuristic routing solutions are proposed for jointly optimizing monitor placement and dynamic routing strategy to achieve maximum measurement gain of the network. Next, we consider the load-balancing problem about how to distribute the network measurement workload across monitoring devices without compromising on the overall traffic measurement gain of the network. Providing effective load-balancing is important since previously-placed monitoring devices may be easily overwhelmed with ever-increasing link rates and increasingly sophisticated measurement tasks. We present an optimization framework called LEISURE (Load-EqualIzed meaSUREment) for load-balancing network measurement workloads across distributed monitors. Finally, a distributed measurement-aware traffic engineering protocol is proposed based on a game-theoretic re-routing policy that attempts to optimally utilize existing monitor locations for maximizing the traffic measurement gain of the network while ensuring that the traffic load distribution across the network satisfies some traffic engineering constraint. It guarantees not only a provable Nash equilibrium, but also a quick convergence without significant oscillations to an equilibrium state in which the measurement utility of the network is close to the maximum achievable gain using offline, centralized routing-assisted network monitoring mechanisms. Both these centralized and distributed routing-assisted approaches improve the overall traffic measurement utility of the network significantly while ensuring low computation complexity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer