It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: S6
Abstract
Background: Massively parallel transcriptome sequencing (RNA-Seq) is becoming the method of choice for studying functional effects of genetic variability and establishing causal relationships between genetic variants and disease. However, RNA-Seq poses new technical and computational challenges compared to genome sequencing. In particular, mapping transcriptome reads onto the genome is more challenging than mapping genomic reads due to splicing. Furthermore, detection and genotyping of single nucleotide variants (SNVs) requires statistical models that are robust to variability in read coverage due to unequal transcript expression levels.
Results: In this paper we present a strategy to more reliably map transcriptome reads by taking advantage of the availability of both the genome reference sequence and transcript databases such as CCDS. We also present a novel Bayesian model for SNV discovery and genotyping based on quality scores.
Conclusions: Experimental results on RNA-Seq data generated from blood cell tissue of three Hapmap individuals show that our methods yield increased accuracy compared to several widely used methods. The open source code implementing our methods, released under the GNU General Public License, is available at http://dna.engr.uconn.edu/software/NGSTools/ .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer