[[missing key: loading-pdf-error]] [[missing key: loading-pdf-link]]
Abstract
RNA interference (RNAi) is an evolutionarily conserved gene silencing mechanism in eukaryotes, with regulatory roles in a variety of biological processes, including cell cycle, cell differentiation, physiological and metabolic pathways, and stress responses. RNAi can function by transcriptional silencing, mRNA target cleavage, translation repression and/or DNA elimination. In this study, we used the unicellular green alga Chlamydomonas reinhardtii as a model system to study RNAi-mediated translation repression. We demonstrated that small RNAs (sRNAs) generated from exogenously introduced inverted repeat transgenes, with perfect complementarity to the 3'UTR of a target transcript, can inhibit protein synthesis, without or with only minimal mRNA destabilization. In addition, there are no changes in the polyadenylation status of sRNA-repressed transcripts. Moreover, the translationally repressed mRNAs remain associated with polyribosomes, suggesting that sRNA-mediated silencing occurs at a post-initiation step of translation. Intriguingly, we consistently observed reduced sensitivity of the ribosomes associated with these repressed transcripts to inhibition by antibiotics such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in Chlamydomonas may involve alterations to the function/structural conformation of translating ribosomes. Additionally, since sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, this mechanism may have been a feature of an ancestral RNAi machinery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





