It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The article is focused on rating classification of financial situation of enterprises using self-learning artificial neural networks. This is such a situation where the sets of objects of the particular classes are not well-known. Otherwise, it would be possible to use a multi-layer neural network with learning according to models. The advantage of a self-learning network is particularly the fact that its classification is not burdened by a subjective view. With reference to complexity, this sorting into groups may be very difficult even for experienced experts. The article also comprises the examples which confirm the described method functionality and the neural network model used. A major attention is focused on the classification of agricultural companies. For this purpose, financial indicators of eighty one agricultural companies were used.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer