Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Geekbench is one of the most referenced cross-platform benchmarks in the mobile world. Most of its workloads are synthetic but some of them aim to simulate real-world behavior. In the mobile world, its microarchitectural behavior has been reported rarely since the hardware profiling features are limited to the public. As a popular mobile performance workload, it is hard to find Geekbench’s microarchitecture characteristics in mobile devices. In this paper, a thorough experimental study of Geekbench performance characterization is reported with detailed performance metrics. This study also identifies mobile system on chip (SoC) microarchitecture impacts, such as the cache subsystem, instruction-level parallelism, and branch performance. After the study, we could understand the bottleneck of workloads, especially in the cache sub-system. This means that the change of data set size directly impacts performance score significantly in some systems and will ruin the fairness of the CPU benchmark. In the experiment, Samsung’s Exynos9820-based platform was used as the tested device with Android Native Development Kit (NDK) built binaries. The Exynos9820 is a superscalar processor capable of dual issuing some instructions. To help performance analysis, we enable the capability to collect performance events with performance monitoring unit (PMU) registers. The PMU is a set of hardware performance counters which are built into microprocessors to store the counts of hardware-related activities. Throughout the experiment, functional and microarchitectural performance profiles were fully studied. This paper describes the details of the mobile performance studies above. In our experiment, the ARM DS5 tool was used for collecting runtime PMU profiles including OS-level performance data. After the comparative study is completed, users will understand more about the mobile architecture behavior, and this will help to evaluate which benchmark is preferable for fair performance comparison.

Details

Title
Microarchitectural Characterization on a Mobile Workload
Author
Lee, Woohyong 1 ; Lee, Jiyoung 1 ; Park, Bo Kyung 2   VIAFID ORCID Logo  ; Kim, R Young Chul 2   VIAFID ORCID Logo 

 Samsung Electronics Co., Ltd., Hwasung 18448, Korea; [email protected] (W.L.); [email protected] (J.L.) 
 SE Lab., Department of Software and Communication Engineering, Hongik University, Sejong 30016, Korea; [email protected] 
First page
1225
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2534502852
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.