It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Flow-based generative models have become an important class of unsupervised learning approaches. In this work, we incorporate the key ideas of renormalization group (RG) and sparse prior distribution to design a hierarchical flow-based generative model, RG-Flow, which can separate information at different scales of images and extract disentangled representations at each scale. We demonstrate our method on synthetic multi-scale image datasets and the CelebA dataset, showing that the disentangled representations enable semantic manipulation and style mixing of the images at different scales. To visualize the latent representations, we introduce receptive fields for flow-based models and show that the receptive fields of RG-Flow are similar to those of convolutional neural networks. In addition, we replace the widely adopted isotropic Gaussian prior distribution by the sparse Laplacian distribution to further enhance the disentanglement of representations. From a theoretical perspective, our proposed method has
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Physics, University of California , San Diego, La Jolla, CA 92093, United States of America
2 Computational Quantum Science Laboratory, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
3 Redwood Center, Berkeley AI Research, University of California, Berkeley , Berkeley, CA 94720, United States of America