It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity. Both domains are essential for Vasa body assembly in vivo and droplet formation in vitro via phase separation. FAST-iCLIP reveals that BmVasa preferentially binds transposon mRNAs. Loss of Siwi function derepresses transposons but has marginal effects on BmVasa-RNA binding. This study shows that BmVasa assembles nuage by phase separation via its ability to self-associate and bind newly exported transposon mRNAs. This unique property of BmVasa allows transposon mRNAs to be sequestered and enriched in nuage, resulting in effective Siwi-dependent transposon repression and Ago3-piRISC biogenesis.
Bombyx Vasa assembles Vasa bodies, the site of transposon silencing by Siwi and Ago3-piRISC formation. Here, the authors show Vasa sequesters transposon mRNAs in Vasa bodies via phase separation requiring RNA binding and self-association of Vasa.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 The University of Tokyo, Department of Biological Sciences, Graduate School of Science, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X)
2 The University of Tokyo, Department of Biological Sciences, Graduate School of Science, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X); Kyoto University, Department of Medical Chemistry, Graduate School of Medicine, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033)