Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the effects of climate change progressively worsen, many scientists are concerned over the expanding geographic range and impact of forest-defoliating insects. Many are currently pointing to this form of disturbance becoming a key focus of remote sensing research in the coming decades; however, the available body of research remains lacking. This study investigated the viability of detecting and quantifying damage caused to a managed Scots pine forest in central Poland by insect defoliation disturbance using high-resolution multispectral satellite imagery. Observed leaf area index (LAI) values were compared to frass observations (insect detritus) to assess the relationship between LAI and defoliating insect activity across a single life cycle of A. posticalis Mats. Across four managed plots, four vegetative indices (NDVI, GNDVI, EVI, and MSAVI2) were calculated using multispectral satellite imagery from a PlanetScope (PSB.SD instrument) satellite system. Then, 1137 point-sampled digital number (DN) values were extracted from each index, and a correlation analysis compared each to 40 ground-observed LAI data points. LAI was modeled on the basis of NDVI values. Three models were assessed for their performance in predicting LAI. They were fit using a variety of regression techniques and assessed using several goodness-of-fit measures. A relationship between observed LAI and frass observations was found to be statistically significant (p-value = 0.000303). NDVI was found to be the correlated LAI values (rho = 0.612). Model 3, which was based on concepts of the Beer–Lambert law, resulted in the most robust predictions of LAI. All parameters were found to be significant post fitting of the model using a nonlinear least squares method. Despite the success of the Beer’s law model in predicting LAI, detection of A. posticalis damage was not achieved. This was predominately due to issues of resolution and plot condition, among others. The results of this analysis address many interesting facets of remote sensing analysis and challenge the commonly held view of the impeachability of these methods.

Details

Title
A Small-Scale Investigation into the Viability of Detecting Canopy Damage Caused by Acantholyda posticalis Disturbance Using High-Resolution Satellite Imagery in a Managed Pinus sylvestris Stand in Central Poland
Author
Jackson, Seymour 1 ; Brach, Michał 2   VIAFID ORCID Logo  ; Sławski, Marek 3   VIAFID ORCID Logo 

 U.S. Forest Service Portland, 1220 SW 3rd Avenue, Portland, OR 97204, USA; [email protected] 
 Department of Geomatics and Land Management, Institute of Forest Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland 
 Department of Forest Protection, Institute of Forest Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland; [email protected] 
First page
472
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181468698
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.