- Preview Available
- Scholarly Journal
Microcosmic mechanism of die-sinking mixed-gas atomization discharge ablation process on titanium alloy
We're sorry, there is no preview available.
Try and log in through your library or institution to see if they have access.
Abstract
In order to reveal the microscopic mechanism of the titanium alloy die-sinking mixed-gas atomization discharge ablation process (MA-DAP), a single-pulse discharge test was performed using a needle electrode discharge device. According to the step-like characteristic of the single discharge waveform, the micro-erosion process could be divided into four stages: preparation for oxidation ablation; oxidation occurrence and oxide layer generation; oxidation-ablation dynamic balance and oxide layer prototype formation; and oxidation-ablation termination and integral oxide layer formation. Theoretical analysis showed that the violent exothermic oxidation reaction between the oxygen medium and the high-temperature melting material introduced a large quantity of external chemical energy into the sparking region. Fast vaporization and explosion of the atomized medium after heating gave MA-DAP high particle removal power. The technological experimental results showed MA-DAP provides high material removal efficiency and strong deep-hole machining ability. The depth-to-diameter ratio of the specially shaped titanium alloy MA-DAF blind hole was 11 times that from traditional electrical discharge machining, while the cross-sectional hardness can be reduced by 45%.






