You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
Many asteroids show absorption features diagnostic of hydrated minerals in the 3-μ m spectral region. Reflectance studies in this region can determine the hydration state of surface minerals, and by inference, the thermal histories of bodies. Observations of M-class asteroids from 1.25-3.5 μ m show that many of these asteroids have water of hydration, and those that do cannot be interpreted as the cores of differentiated parent bodies. Because of this, it is suggested that the hydrated M asteroids should be split off into their own class–the W class. Simple spectral mixing models of these asteroids show they are consistent with enstatite chondritic material mixed with talc, suggesting the W asteroids may be the result of aqueous alteration of enstatite chondrites, though other models may also hold merit. The E asteroids are also found to have hydrated members, inconsistent with their interpretation as purely igneous bodies. A trend for large E and M asteroids to be hydrated is found. A compilation of S-class asteroid data at 3 μ m has been performed, supporting the finding that some S asteroids have spectra consistent with a mixture of ordinary chondrite and metal. There is some evidence for a trend altering the spectra of near-Earth asteroids to look like main-belt asteroids, but no simple trend can also include the ordinary chondrite meteorites. Variation in asteroids at 3 μ m was studied, and while no clear evidence of rotational variation is found, there is circumstantial evidence for latitudinal variation on several asteroids, perhaps as interior layers of an aqueously altered body are excavated. Finally, high-resolution studies of C-class asteroids were performed. A finding that 1 Ceres’ spectrum matches that of an ammoniated phyllosilicate is supported over an extended wavelength range. Observations of other CBG-class asteroids find no ammoniated minerals. The CBG-class asteroids, other than Ceres, all share very similar spectra, suggesting similar hydrated minerals on their surfaces.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
Observations of main-belt asteroids in the 3-micron region
Author
Rivkin, Andrew Scott
Year
1997
Publisher
ProQuest Dissertations & Theses
ISBN
978-0-591-68703-3
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
304335583
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.