Content area
Abstract
In this thesis, I worked on estimating the smallest k-dilation of all diffeomorphisms between two n-dimensional rectangles R and S. I proved that for many rectangles there are highly non-linear diffeomorphisms with much smaller k-dilation than any linear diffeomorphism. When k is equal to n-1, I determined the smallest k-dilation up to a constant factor.
For all values of k and n, I solved the following related problem up to a constant factor. Given n-dimensional rectangles R and S, decide if there is an embedding of S into R which maps each k-dimensional submanifold of S to an image with larger k-volume.
I also applied the k-dilation techniques to two purely topological problems: estimating the Hopf invariant of a map from a 3-manifold to a high-genus surface, and determining whether there is a map of non-zero degree from a 3-manifold to a hyperbolic 3-manifold. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)