[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
Ammonia concentration and fluxes were measured above a growing triticale field for two months during May and June 2010 at the NitroEurope crop site in Grignon (Fr-Gri) near Paris, France. The measurement campaign started 15 days following a 40 kg N ha-1 application of an ammonium nitrate solution. A new mini-wedd (Wet Effluent Denuder) flow injection analyser with three channels (ROSAA, RObust and Sensitive Ammonia Analyser) was used to measure NH3 fluxes using the aerodynamic gradient method. The measured ammonia concentrations varied from 0.01 to 39 μg NH3 m-3 and were largely influenced by advection from the nearby farm. The ammonia fluxes ranged from -560 to 220 ng NH3 m-2 s-1 and averaged -29 ng NH3 m-2 s-1 . During some periods the large deposition fluxes could only be explained by a very small surface resistance, which may be partly due to the high concentrations of certain acid gases (HNO3 and SO2 ) observed in this suburban area. Ammonia emissions were also observed. The canopy compensation point Cc was around 1.5 μg NH3 m-3 on average. The canopy emission potential Γc (Cc normalised for the temperature response of the Henry equilibrium) decreased over the course of the measurement campaign from Γc = 2200 to Γc = 450, the latter value being close to the median stomatal emission potential (Γs ) and lower than the median ground emission potential (Γg ) for managed ecosystems reported in the literature. The temporal dynamics of the measured NH3 flux compared well with the Surfatm-NH3 model using fitted parameters. The subjectivity of the model fitting is discussed based on a sensitivity analysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer