It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper investigates the boundaries of the recent result that eliciting more than one estimate from the same person and averaging these can lead to accuracy gains in judgment tasks. It first examines its generality, analysing whether the kind of question being asked has an effect on the size of potential gains. Experimental results show that the question type matters. Previous results reporting potential accuracy gains are reproduced for year-estimation questions, and extended to questions about percentage shares. On the other hand, no gains are found for general numerical questions. The second part of the paper tests repeated judgment sampling's practical applicability by asking judges to provide a third and final answer on the basis of their first two estimates. In an experiment, the majority of judges do not consistently average their first two answers. As a result, they do not realise the potential accuracy gains from averaging.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer