It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study investigated a series of independent unassisted and device-assisted transfers from a wheelchair to vehicle mock-up and vice versa while simultaneously capturing kinematic, kinetic and electromyographic (EMG) data of impaired volunteers. The study provides a venue for observation and evaluation of upper extremity (UE) joint stresses, muscular force and functional demands associated with transfers in persons with spinal cord injury (SCI) to ultimately prevent UE injury, minimize excessive stress, preserve functionality and limit pain. If people with SCI lose function of their UEs, due to pain and/or degeneration, they must then rely on others for everyday tasks.
Five paraplegic males from the Tampa Bay area were recruited to take part in the study. Participants were asked to perform a series of transfers using 4 commercially available devices or mock-ups of that device as well as an unassisted transfer, which permitted the use of no assistive device. Three data types were captured: kinematic data using motion capture, kinetic data using force transducers which were integrated into the vehicle mock-up and EMG of 5 bilateral muscle groups. Data collection took approximately 4 hours per subject.
Forces occurring during the unassisted transfers were found to be the highest. This is also supported by the EMG data. Performing level transfers lessened stresses at the UE versus non-level transfers. The highest moments of the UEs were found at the shoulders with high variability between subjects. It was also found that body mass index (BMI) had an affect on a subjects ability to perform transfers.
Ultimately this study found that using an assistive device is better than not using an assistive device. This is proven by EMG and force data, which were both found to be less with the use of an assistive device as opposed to transferring independently with no assistance. Performing level transfers, maintaining ones body mass and staying active are all factors that will limit stresses at the UEs during wheelchair transfers to and from a vehicle.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer