[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
We present a 60-year record of the stable isotopes of atmospheric carbon monoxide (CO) from firn air samples collected under the framework of the North Greenland Eemian Ice Drilling (NEEM) project. CO concentration, δ13 C, and δ18 O of CO were measured by gas chromatography/isotope ratio mass spectrometry (gc-IRMS) from trapped gases in the firn. We applied LGGE-GIPSA firn air models (Witrant et al., 2011) to correlate gas age with firn air depth and then reconstructed the trend of atmospheric CO and its stable isotopic composition at high northern latitudes since 1950. The most probable firn air model scenarios show that δ13 C decreased slightly from -25.8[per thousand] in 1950 to -26.4[per thousand] in 2000, then decreased more significantly to -27.2[per thousand] in 2008. δ18 O decreased more regularly from 9.8[per thousand] in 1950 to 7.1[per thousand] in 2008. Those same scenarios show CO concentration increased gradually from 1950 and peaked in the late 1970s, followed by a gradual decrease to present day values (Petrenko et al., 2012). Results from an isotope mass balance model indicate that a slight increase, followed by a large reduction, in CO derived from fossil fuel combustion has occurred since 1950. The reduction of CO emission from fossil fuel combustion after the mid-1970s is the most plausible mechanism for the drop of CO concentration during this time. Fossil fuel CO emissions decreased as a result of the implementation of catalytic converters and the relative growth of diesel engines, in spite of the global vehicle fleet size having grown several fold over the same time period.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





