Full Text

Turn on search term navigation

Copyright Copernicus GmbH 2012

Abstract

Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2 ). Negative relationships between O2 and δ15 NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15 N:18 O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15 NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3- ) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

Details

Title
Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer
Author
Heffernan, J. B.; Albertin, A. R.; Fork, M. L.; Katz, B. G.; Cohen, M. J.
First page
1671
Publication year
2012
Publication date
2012
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1019225607
Copyright
Copyright Copernicus GmbH 2012