Full Text

Turn on search term navigation

Copyright Copernicus GmbH 2012

Abstract

The EMEP/EEA guidebook 2009 for agricultural emission inventories reports an average ammonia (NH3 ) emission factor (EF) by volatilisation of 55% of the applied total ammoniacal nitrogen (TAN) content for cattle slurry, and 35% losses for pig slurry, irrespective of the type of surface or slurry characteristics such as dry matter content and pH. In this review article, we compiled over 350 measurements of EFs published between 1991 and 2011. The standard slurry application technique during the early years of this period, when a large number of measurements were made, was spreading by splash plate, and as a result reference EFs given in many European inventories are predominantly based on this technique. However, slurry application practices have evolved since then, while there has also been a shift in measurement techniques and investigated plot sizes. We therefore classified the available measurements according to the flux measurement technique or measurement plot size and year of measurement. Medium size plots (usually circles between 20 to 50 m radius) generally yielded the highest EFs. The most commonly used measurement setups at this scale were based on the Integrated Horizontal Flux method (IHF or the ZINST method (a simplified IHF method)). Several empirical models were published in the years 1993 to 2003 predicting NH3 EFs as a function of meteorology and slurry characteristics (Menzi et al., 1998; Søgaard et al., 2002). More recent measurements show substantially lower EFs which calls for new measurement series in order to validate the various measurement approaches against each other and to derive revised inputs for inclusion into emission inventories.

Details

Title
Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?
Author
Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C. R.
First page
1611
Publication year
2012
Publication date
2012
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1019225785
Copyright
Copyright Copernicus GmbH 2012