It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using the notion of integrating factors, Lawson developed a class of numerical methods for solving stiff systems of ordinary differential equations. However, the performance of these "Generalized Runge - Kutta processes" was demonstrably poorer when compared to the ETD schemes of Certaine and Nørsett, recently rediscovered by Cox and Matthews. The deficit is particularly pronounced when the schemes are applied to parabolic problems. In this paper we compare a fourth order Lawson scheme and a fourth order ETD scheme due to Cox and Matthews, using the nonlinear Schro¨dinger equation as the test problem. The primary testing parameters are degree of regularity of the potential function and the initial condition, and numerical performance is heavily dependent upon these values. The Lawson and ETD schemes exhibit significant performance differences in our tests, and we present some analysis on this.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer