[A & I plus PDF only]
COPYRIGHT: © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2011
Abstract
A methodology to assess storm-induced coastal vulnerability taking into account the different induced processes separately (inundation and erosion) is presented. It is based on a probabilistic approach where hazards time series are built from existing storm data and later used to fit an extreme probability function. This is done for different sectors along the coast defined in terms of the wave climate and for representative beach types of the area to be analyzed. Once probability distributions are available, coastal managers must decide the probability of occurrence to be accepted as well as the period of concern of the analysis in function of the importance of the hinterland. These two variables will determine the return period to be considered in the assessment. The comparison of hazards and vulnerabilities associated with the selected probability of occurrence permit to identify the most hazardous areas along the coast in a robust manner by including the spatial variability in forcing (storm climate) and receptor (beaches). The methodology has been applied to a 50 km long coastal stretch of the Catalonia (NW Mediterranean) where offshore wave conditions can be assumed to be homogeneous. In spite of this spatially constant wave field, obtained results indicate a large variability in hazards intensity and vulnerability along the coast.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer