[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
A contrail from a large-body A380 aircraft at cruise in the humid upper troposphere has been probed with in-situ instruments onboard the DLR research aircraft Falcon. The contrail was sampled during 700 s measurement time at contrail ages of about 1-4 min. The contrail was in the vortex regime during which the primary wake vortices were sinking 270 m below the A380 flight level while the secondary wake remained above. Contrail properties were sampled separately in the primary wake at 90 and 115 s contrail age and nearly continously in the secondary wake at contrail ages from 70 s to 220 s. The scattering phase functions of the contrail particles were measured with a polar nephelometer. The asymmetry parameter derived from these data is used to distinguish between quasi-spherical and aspherical ice particles. In the primary wake, quasi-spherical ice particles were found with concentrations up to 160 cm-3 , mean effective diameter Deff of 3.7 μm, maximum extinction of 7.0 km-1 , and ice water content (IWC) of 3 mg m-3 at slightly ice-subsaturated conditions. The secondary and primary wakes were separated by an almost particle-free wake vortex gap. The secondary wake contained clearly aspherical contrail ice particles with mean Deff of 4.8 μm, mean (maximum) concentration, extinction, and IWC of 80 (350) cm-3 , 1.6 (5.0) km-1 , and 2.5 (10) mg m-3 , respectively, at conditions apparently above ice-saturation. The asymmetry parameter in the secondary wake decreased with contrail age from 0.87 to 0.80 on average indicating a preferential aspherical ice crystal growth. A retrieval of ice particle habit and size with an inversion code shows that the number fraction of aspherical ice crystals increased from 2% initially to 56% at 4 min contrail age. The observed crystal size and habit differences in the primary and secondary wakes of an up to 4 min old contrail are of interest for understanding ice crystal growth in contrails and their climate impact. Aspherical contrail ice particles cause less radiative forcing than spherical ones.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer