Abstract

Doc number: 12

Abstract

Background: Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA) domain. The first two recognize both phosphothreonine (pThr) and phosphoserine (pSer) residues, but FHA has high specificity for pThr residues. Here we used molecular dynamics (MD) simulations to reveal how FHA exclusively chooses pThr and how BRCT and WW recognize both pThr/pSer. The work also investigated the energies and thermodynamic information of intermolecular interactions.

Results: Simulations carried out included wide-type and mutated systems. Through analysis of MD simulations, we found that the conserved His residue defines dual loops feature of the FHA domain, which creates a small cavity reserved for only the methyl group of pThr. These well-organized loop interactions directly response to the pThr binding selectivity, while single loop (the 2nd phosphobinding site of FHA) or in combination with α-helix (BRCT repeats) or β-sheet (WW domain) fail to differentiate pThr/pSer.

Conclusions: Understanding the domain pre-organizations constructed by conserved residues and the driving force of domain-phosphopeptide recognition provides structural insight into pThr specific binding, which also helps in engineering proteins and designing peptide inhibitors.

Details

Title
Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics
Author
Huang, Yu-ming M; Chang, Chia-en A
Publication year
2011
Publication date
2011
Publisher
BioMed Central
e-ISSN
20461682
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1031197648
Copyright
© 2011 Huang and Chang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.