It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 12
Abstract
Background: Thymidine kinase 1 (TK1) is a salvage enzyme involved in DNA precursor synthesis, and its expression is proliferation dependent. A serum form of TK1 has been used as a biomarker in human medicine for many years and more recently to monitor canine lymphoma. Canine TK1 has not been cloned and studied. Therefore, dog and human TK1 cDNA were cloned and expressed, and the recombinant enzymes characterized. The serum and cellular forms of canine and human TK1 were studied by size-exclusion chromatography and the level of TK1 protein was determined using polyclonal and monoclonal anti-TK1 antibodies.
Results: Canine TK1 phosphorylated the thymidine (dThd) analog 3'-azido-thymidine (AZT) as efficiently as it did dThd, whereas AZT phosphorylation by human TK1 was less efficient than that of dThd. Dog TK1 was also more thermostable and pH tolerant than the human enzyme. Oligomeric forms were observed with both enzymes in addition to the tetrameric and dimeric forms. Cellular TK1 was predominantly seen in dimeric and tetrameric forms, in the case of both dog TK1 from MDCK cells and human TK1 from CEM cells. Active serum TK1 was found mainly in a high molecular weight form, and treatment with a reducing agent shifted the high molecular weight complex to lower molecular weight forms with reduced total activity. Western blot analysis demonstrated a polypeptide of 26 kDa (dog) and 25 kDa (human) for cellular and serum TK1. There was no direct correlation between serum TK1 activity and protein level. It appears that a substantial fraction of serum TK1 is not enzymatically active.
Conclusions: These results suggest that the serum TK1 protein differs from cellular or recombinant forms, is more active in high molecular weight complexes, and is sensitive to reducing agents. The results presented here provide important information for the future development and use of serum TK1 as a diagnostic biomarker in human and veterinary medicine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer