Full text

Turn on search term navigation

Copyright © 2012 J. Betzabe González-Campos et al. J. Betzabe González-Campos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The molecular dynamics of PVA/AgnP composites were studied by dielectric spectroscopy (DS) in the 20-300°C temperature range. Improper water elimination leads to misinterpretation of thermal relaxations in PVA composites in agreement with the previous report for pristine PVA. The evaporation of water and its plasticizing effect are more evident in pure PVA confirming the existence of strong interaction between OH groups of PVA chains and AgnP. Dry films show a single nonlinear VFT dependence (from 45°C until melting) associated to the α-relaxation and, therefore, to the glass transition phenomenon and from dielectric measurements, the T [subscript]g[/subscript] of composites vary from 88°C for pristine PVA to 125°C for PVA/AgnP (5 wt%). Below 45°C, dry films exhibit a single Arrhenius behavior showing a 3D hopping conductivity as explained based on the variable range hopping model. PVA/AgnP composites have higher conductivity compared to pristine PVA, and it increases as AgnP weight percent increases. Finally, DMA measurements support the statement that a secondary relaxation was erroneously assigned as the glass transition of PVA and composites in previous reports.

Details

Title
Molecular Dynamics Analysis of PVA-AgnP Composites by Dielectric Spectroscopy
Author
González-Campos, J Betzabe; Prokhorov, Evgen; Sanchez, Isaac C; Luna-Bárcenas, J Gabriel; Manzano-Ramírez, Alejandro; González-Hernández, Jesús; López-Castro, Yliana; del Río, Rosa E
Publication year
2012
Publication date
2012
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1038408829
Copyright
Copyright © 2012 J. Betzabe González-Campos et al. J. Betzabe González-Campos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.