It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 286
Abstract
Background: The BH3-only members of the Bcl-2 protein family have been proposed to play a key role in the control of apoptosis and in the initiation of the apoptotic pathways. In this study, we evaluated the expression of Bim, Noxa, and Puma in non-small cell lung cancer (NSCLC).
Methods: A total of 135 surgically resected NSCLCs were immunohistochemically assessed for Bim, Noxa, and Puma expression. The immunoscores were determined, and then its correlation with either the clinicopathological variables or the survival outcomes were analyzed.
Results: Immunohistochemical reactivity for Bim, Noxa, and Puma was detected in the cytoplasm of the tumor cells. Bim expression was associated with several clinicopathological factors, including sex (p < 0.001), smoking habit (p = 0.03), pathological histology (p = 0.001), pathological T stage (p = 0.03), pathological disease stage (p = 0.02), and differentiation of tumor (p < 0.001). Multivariate logistic regression analysis showed a significant correlation between low Bim expression and squamous cell carcinoma (p = 0.04), in addition to a correlation between high Bim expression and well differentiated tumors (p = 0.02). Analysis of cellular biological expression demonstrated a link between low Bim expression and high Ki67. While Noxa expression was also shown to be correlated with both smoking habit (p = 0.02) and the pathological histology (p = 0.03), there was no strong association observed between the expression and the clinical features when they were examined by a multivariate logistic regression analysis. No correlations were noted between Puma expression and any of the variables. Our analyses also indicated that the expression levels of the BH3-only proteins were not pertinent to the survival outcome.
Conclusions: The current analyses demonstrated that Bim expression in the NSCLCs was associated with both squamous cell carcinoma histology and tumor proliferation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer