[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
Numerous studies have shown the importance of riparian zones to reduce nitrate (NO3- ) contamination coming from adjacent agricultural land. Much less is known about nitrogen (N) transformations and nitrate fluxes in riparian soils with short hydroperiods (1-3 days of inundation) and there is no study that could show whether these soils are a N sink or source. Within a restored section of the Thur River in NE Switzerland, we measured nitrate concentrations in soil solutions as an indicator of the net nitrate production. Samples were collected along a quasi-successional gradient from frequently inundated gravel bars to an alluvial forest, at three different depths (10, 50 and 100 cm) over a one-year period. Along this gradient we quantified N input (atmospheric deposition and sedimentation) and N output (leaching) to create a nitrogen balance and assess the risk of nitrate leaching from the unsaturated soil to the groundwater. Overall, the main factor explaining the differences in nitrate concentrations was the field capacity (FC). In subsoils with high FCs and VWC near FC, high nitrate concentrations were observed, often exceeding the Swiss and EU groundwater quality criterions of 400 and 800 μmol L-1 , respectively. High sedimentation rates of river-derived nitrogen led to apparent N retention up to 200 kg N ha-1 yr-1 in the frequently inundated zones. By contrast, in the mature alluvial forest, nitrate leaching exceeded total N input most of the time. As a result of the large soil N pools, high amounts of nitrate were produced by nitrification and up to 94 kg N-NO3- ha-1 yr-1 were leached into the groundwater. Thus, during flooding when water fluxes are high, nitrate from soils can contribute up to 11% to the total nitrate load in groundwater.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer