It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 50
Abstract
Background: Acid-base balance refers to the equilibrium between acids and bases in the human body. Nutrition may affect acid-base balance and further physical performance. With the help of PRAL (potential renal acid load), a low-protein vegetarian diet (LPVD) was designed to enhance the production of bases in body. The aim of this study was to investigate if LPVD has an effect on blood acid-base status and performance during submaximal and maximal aerobic cycling.
Methods: Nine healthy, recreationally active men (age 23.5 ± 3.4 yr) participated in the study and were randomly divided into two groups in a cross-over study design. Group 1 followed LPVD for 4 days and group 2 ate normally (ND) before performing a cycle ergometer test. The test included three 10-min stages at 40, 60 and 80% of VO2 max. The fourth stage was performed at 100% of VO2 max until exhaustion. After 10-16 days, the groups started a second 4-day diet, and at the end performed the similar ergometer test. Venous blood samples were collected at the beginning and at the end of both diet periods and after every stage cycled.
Results: Diet caused no significant difference in venous blood pH, strong ion difference (SID), total concentration of weak acids (Atot ), partial pressure of CO2 (pCO2 ) or HCO3 - at rest or during cycling between LPVD and ND. In the LPVD group, at rest SID significantly increased over the diet period (38.6 ± 1.8 vs. 39.8 ± 0.9, p=0.009). Diet had no significant effect on exercise time to exhaustion, but VO2 was significantly higher at 40, 60 and 80% of VO2 max after LPVD compared to ND (2.03 ± 0.25 vs. 1.82 ± 0.21 l/min, p=0.035; 2.86 ± 0.36 vs. 2.52 ± 0.33 l/min, p<0.001 and 4.03 ± 0.50 vs. 3.54 ± 0.58 l/min, p<0.001; respectively).
Conclusion: There was no difference in venous blood acid-base status between a 4-day LPVD and ND. VO2 was increased during submaximal cycling after LPVD suggesting that the exercise economy was poorer. This had no further effect on maximal aerobic performance. More studies are needed to define how nutrition affects acid-base balance and performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer